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C A P I L L A R Y  P R E S S U R E  A N D  T H E  G R A V I T Y  

A N D  D Y N A M I C  P H A S E  D I S T R I B U T I O N  

IN A W A T E R - O I L - G A S - R O C K  S Y S T E M  

V.  I. P e n ' k o v s k i i  UDC 532.546 

The concept of a four-phase water-oil-gas-rock system as the aggregate of four continua that 
interpenetrate but do not mix, in a physicochemical sense, with one another assumes that at each "point" of 
the space occupied by the system the pressures undergo jumps at the interfaces. 

Let so, s, and S l be the saturations of the pore space with gas, oil, and water, respectively (so + s + sl = 
1). In equilibrium between the pressures p0, p, and pl in the phases two constitutive relations, p = po + F(s ,  s l) 
and pl = p o - F l ( s ,  Sl), should hold. Here the functions F and F1 are assumed to be specified in the inner region 
of a triangular diagram (Fig. 1). They depend at least on the structure of the pore space, the physicochemical 
properties of liquids and rock, which are characterized by a set of certain parameters, and on the saturations. 

The problem of specifying constitutive relations is rather complex and poorly studied both 
experimentally and theoretically. However, the situation is simplified if one of the variable phases vanishes, 
which corresponds to the boundaries of the triangular diagram. Based on experimental data for a wide range 
of porous media saturated with various combinations of the pairs of liquids of the electrolyte solution (or 
water)-kerosene--air type, Leverett [1] has established for these limiting cases that 

S = 0 :  P l  = P0 - -  p ~ q o ( S 0 )  ---= P0 - -  plcqO(1 - -  8 1 ) ;  ( 1 )  

Sl : 0 :  P : P 0  --pOcqo(SO) : P 0  -- Pc0qO(1 --S); (2) 

S 0 = 0 :  p = p l - t - p O c l ~ ( s ) = p x + p O c l t p ( 1 - - S l ) .  (3) 

The parameters pc ~ pl, and 01 Pc , which are usually determined in equilibrium, indicate the degree of 
wettability of the medium skeleton by corresponding liquids and are proportional to the paired differences of 
specific cohesion and adhesion works of the particles of these liquids. Ignoring the work of cohesion (adhesion) 
forces of the gas particles, one can assume that approximately pc ~ = pc 1 - p ~  c. For pc ~ > 0, a porous medium is 
considered hydrophilic, and for pc ~ < 0, after an appropriate replacement of the variable s for Sl this medium 
is considered hydrophobic. However, it should be noted that in changing the direction of the motion of liquids 
the sign of pc ~ can change [2]. 

The monotonically decreasing function ~(s), which coincides up to a factor with the known Leverett 
function, characterizes the pore-space geometry and is determined by the parameters of the size distribution 
of conventional pore radii. 

We assume that saturations are normalized so that qo(0) = 0 and cp(1) = 1. In this case, the parameters 
p0, pl, and p0l are simultaneously the maximum possible capillary pressures. 

C o n s t i t u t i v e  R e l a t i o n s .  Let at a certain s fixed at the left boundary of the diagram, where so = 0 
and Sl = 1 - s and formula (3) is valid, a shift occur inside the triangular region toward the right boundary 
at which Sl = 0 and so = 1 - s. This shift decreases the water saturation sl and increases the curvature 
of water menisci, thus leading to a larger capillary jump at the oil-water interface. On the one hand, this 
jump can be approximately estimated by the same relation (3) with the oil saturation s increased by the 
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increase of the gas saturation so after the shift. In other words, since inside the region 1 - sl = s + so, we set 
p = pl = pl  + p 0 ~ (  1 _ s~) = p~ + p ~ ~  + so) .  

On the other hand, under small shifts from the right boundary of the diagram to the left one, formula 
(2) allows one to write the following approximation: p = p2 = p0 - p ~  - s )  = po~(so + s~). 

Considering an arbitrary internal point of the diagram as a result of the displacement from both 
boundaries (we call these displacements the a transitions), to calculate the oil pressure p, we use the weighted 
average value of p = p l s l / ( S  1 -b so) q- p2so / ( s l  -4- s0), or in expanded form 

Sl S.__.~0 (4) 
= ~ + Iv0 - v % ( s 0  + ~l) l  Sl + so P [Pl + pcOIr s -~- so)l 81 + 80 

It is clear that at the above boundaries of the diagram formula (4) transforms into "exact" formulas (3) and 
(2), respectively. 

Similar arguments for b transitions from the left boundary to the base and vice versa lead to 

so s (5)  Pl = [PO -- PIc~(S -'[- SO)] ~ + [p - -  pOcl~p(S + 80)1S -b S'----'-~" 

The c transitions between the right boundary and the base give rise to the relation 

1 Sl s 
p0 = ~ + pc~(~0  + s)] ~ + [ p +  p % ( s 0  + ~ )1  s l  +-----~' 

which does not contradict formulas (4) and (5) and, as one can easily check, is a consequence of them. 

aS 
Solving Eqs. (4) and (5) in terms of p and pl, after transformations we write the constitutive relations 

P PO pOc(1 S l ) ~ ( I  S) (pl  c 01 . . . . . .  Pc )slT(X - sl) ,  

Pl : PO -- pOc8~(1 -- S) -- [(1 -- s)plc -[- sp~ - s l ) .  (6) 

Let us consider the behavior of the obtained relations in the vicinity of particular points-vertices of 
the triangular diagram, which correspond to the limiting saturations in any phase: 

(1) On the so = 0 side of the triangle (sl = 1 - s), from formulas (6) we formally obtain the relations 

p = p0 - p ~  - ~ ) -  (pie - p~ - ~ ) ~ ( s ) ,  

w = p0 _ v 0 s ~ ( 1  _ ~) _ [(1 - ~)p~c - ~p0)]~(~) ,  

from which the "exact" formula (3) follows due to the exclusion of pressure p0 in the gas phase that has 
disappeared. In addition, since s --* O, from these expressions we find that p ~ po and pl ~ p0; therefore 

O1 P --* Pl, and for el ~ O, we have p --~ Po and Pl --* Po - Pc , i.e., p -  Pl = pOl. 
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(2) For s ~ 0 (sl ~ 1 - s), first of all, formula (1) follows from relations (6), and furthermore for 
pressure p in the "disappearing" oil phase, we obtain the expression p = po - p ~  - (p~ -pOl ) (1  - s0)~(s0), 
from which follows p ~ p0 for so ~ 0 and p ~ p0 - p0 for sl ~ 0; 

(3) For Sl ---, 0 (s --+ 1 - s0), the "exact" formula (2) follows from the first formula of relations (6), 
and for pressure p~ in the "disappearing" water phase, we find Pl p0 - p ~  so)~(so)  so(p~ - p01) 01 

- -  - -  - -  PC  ' 

from which P l  ~ PO - -  Pc 1 for s ~ 0 and Pl ~ P0 - Pc ~ for s0 ~ 0. 
The results of the transitions considered seem reasonable and physically consistent. 
G r a v i t y  P h a s e  D i s t r i b u t i o n .  As a first trivial example of application of relations (6), we consider a 

steady gravity phase distribution in the upright direction either in an oil-gas field surrounded by water or in 
a separate hydrocarbon inclusion in the aeration zone (so /> 0) of grounds polluted by petroleum products. 
Similar problems were considered in [3-5], in which one can find the results of laboratory experiments and 
some calculations performed using simplified mathematical models. In particular, it was assumed in [3] that 
the water saturation Sl depends only on the capillary pressure between oil and water, while the total saturation 
by liquid phases (s + Sl) is a function of the capillary pressure at the oil-gas interface. 

Let the y axis be directed vertically upward, its origin y = 0 correspond to the positions of the lower 
boundaries of a hydrocarbon inclusion (deposit) or the aeration zone of grounds, on which so = 0 and sl = 1, 
and the water pressure pl = 0. Since the gas (air) density is relatively low, one can assume that its pressure 
is independent of height, i.e., p0 = const. In a quiescent state, the liquid pressures should be hydrostatic: 

P1=--71Y, p = p 0 _ T y .  

Here 71 and 7 are the specific weights of the corresponding liquids and p0 is the oil pressure at height y = 0. 
For definiteness, we assume that at y = 0 the pressures in all phases are equal to zero (p0 = p0 = 0). 

Substituting the values of p0, p, and pl in formulas (6), we obtain the system of nonlinear algebraic equations 
for each fixed y, from which the values of the saturations with water Sl and oil s are found: 

, ,  = ,  (7) 

i Here h i = Pc/3`1 (i = 0, 1, and 01), 6 = 3'/3'1, and ~;-i is a function inverse to the function qo. 
Figure 2 shows the plots of the solutions of system (7) of the gravity phase distribution for the function 

of capillary pressure c2(s ) = (0.Is/(1.1 - s)) 1/2 and h ~ = 15. Curves 1-3 correspond to h i = 20 and hc ~ = 5, 
h~ = 20 and he ~ = 1, and hc 1 -- 16 and h ~ --- 1, respectively. 

Evidently, the relation of capillary pressures h~ hi, and hoe ~ affect significantly the character of the 
phase distribution. In particular, for immiscible liquids which wet the rock skeleton almost identically, a 
gas-free zone is formed in the lower part of the inclusion (curves 2 and 3). 

I n t e r n a l  C a p i l l a r y  L o c k i n g  of  T w o  P h a s e s  u p o n  Q u a s i - T h r e e - P h a s e  F i l t r a t i on .  As the second 
example of application of relations (6), which close the system of equations of motion and also of the laws of 
mass conservation under three-phase filtration, we consider the problem of limiting equilibrium of an oil-gas 
inclusion with air flow passing through this inclusion. As in the case of quasi-two-phase filtration [6], we 
assume that the gas and oil are in an immovable capillary-locked state. 

In this case, from the equations of motion it follows that the pressures (heads) in immovable phases 
are constant (h - h ~ and h0 - h~ Confining ourselves to a one-phase motion, we select the direction of the 
z axis opposite to the velocity vector of the incoming water flow and its origin x = 0 corresponding to the 
outlet section of the inclusion located in a certain region 0 <~ x ~< a. 

In this region, water filtration obeys the generalized Darcy's law and the continuity equation 

Ohl Or1 = 0. (8) 
Vl = - / q f l ( s l )  0 z '  0z 

Let there be a uniform filtration water flow beyond the inclusion. This flow moves under the action of the 
hydraulic gradient i0. From the second equation of system (S) and the condition of conjugate flows we have 
Vl = --iOkl. 
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By  the limiting equi l ibr ium we mean  a s ta te  of the hydrocarbon  inclusion in which the water  saturat ion 
equals zero (sz = 0) in the  out le t  section. An increase in the hydraul ic  gradient of the  incoming filtration flow 
leads to fracture of the inclusion which has been previously in a s ta te  of limiting equil ibrium [6]. 

It should be no ted  that  at  the point  z = 0 of water  discharge from the oil-gas inclusion, none of the 
capillary-locked phases can reach the limiting values s(0) = 1 or s(0) = 0 [s0(0) = 11, since, as is readily seen, 
these values correspond to the  cases of capil lary locking of either an oil or gas inclusion alone. This imposes a 
certain restriction on the assignment  of the  difference between the constants  h ~ - h~ . Choosing the reference 
point for heads such that  the  gas pressure is equal to zero, h ~ = 0 (p0 = 0), we see that  this restriction is 
reduced to the  inequali ty h ~ > / - h  ~ 

Let us in t roduce a dimensionless pa ramete r  d (0 ~< d ~< 1), assuming tha t  h ~ = - d h  ~ Then, having 
defined the function z(sz)  = [ d -  dcsl~0(1 - sl)1/(1 - S l ) ,  where dc = (hl - h~  ~ from the first equation of 
relations (6), we find 

s ( s i )  = 1 - ~- l ( z ( s z ) ) .  (9) 

Thus,  in agreement  with formula (9), the oil saturat ion at the out le t  s(0) is complete ly  determined by a given 
parameter  d, since s(0) = 1 - ~o-l(d). The  limiting values of this pa ramete r  (d = 0 and 1) correspond to the 
degenerated case of locking of one of the  phases. 

For dc ~< 1 and d �9 (0, 1), a value of water  sa turat ion sz = s o can be  found at which z(a ~ = 1 
[s(s ~ = 0]. Let this value be  reached at the point z = x ~ of the inclusion. This  implies that  for z > z ~ 
only the gas can be  in a capillary-locked s ta te  and s = 0. From the  monotonic  character  of the  function c2, 
it follows that  s o is uniquely  found in the  above range of variation of the parameters  d and dc as a root of 
the t ranscendental  equat ion  s o = (1 - d) / (1 - d ~ ( 1  - so)). The  saturat ion dis tr ibut ions s(x),  Sl(Z), and 
so(x) = 1 - (s + sz) are ob ta ined  by integrating Eq. (8) with allowance for relations (6) and (9) and the 
boundary  condit ion sz(0) = 0 in the form 

i O X :  [ ( S l ) - - f l ( S l ) g ( S l , S ) ,  

 ere 

(10) 

g ( , S l ,  8 )  = h c ~  - t - [ ( 1  - 8)hlc  -3 t- sh~ - S l ) ;  

Sl 

= /  s ) f l (S l )ds1-  [ (Sl)  g (s l ,  ' 
0 

For S~ < sl  < 1 (x ~ < x ~ a), one should set in expression (10) s - 0 and g(sl ,O) = go(s1) = 
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h~2(1 - sx). In particular, for the maximum size a of the oil-gas inclusion, we obtain the formula 

1 

[ / ' 1/ a = I(s ~ + go(sl)fldSl z0. 

Figure 3 shows the diagrams of the saturation distribution in an oil-gas inclusion with internal capillary 
locking of the oil and gas phases at limiting equilibrium with water flow moving under the action of the head 
gradient at infinity i0. Curves 1 correspond to h~ = 10, hlc = 20, h ~ = 10, and d = 0.3; 2 to h~ = 10, h~c = 20, 
h ~ = 10, and d = 0.5; and 3 to h ~ = 15, hc 1 = 20, h ~ = 15, and d = 0.3. In calculations, the relative phase 
permeability f t  for the water phase is used as a power function of f l ( s l )  = s~ "5. 

In conclusion, we shall formulate the basic results: 
(1) Using a linear-fractional interpolation from the boundaries inside the triangular phase diagram, 

we have obtained relations between the pressure jumps in the phases and the saturations for a system of the 
water-oil-gas-rock type. To do this, one should know the Leverett function that characterizes the pore space 
of the medium and the characteristic capillary pressures for each pair of fluids saturating the medium. These 
are the constitutive relations in equations describing the three-phase filtration process with allowance for the 
action of capillary forces. 

(2) Based on the relations derived, we have solved two model problems: the problem of static equilibrium 
of phases in the gravity field under pollution of the aeration zone of a water-bearing horizon by petroleum 
products and also the problem of internal capillary locking of the oil-gas inclusion in uniform filtration water 
flOW. 

(3) As multivariant calculations show, the phase-distribution pattern in the region of inclusions depends 
significantly on the relation of the characteristic values of capillary pressures in the two problems. 
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